

Lemington Riverside Primary School

Calculation Policy (Updated December 2019)

Calculation Policy
 Addition

Key Language : sum, total, parts wholes, plus, add, altogether, more, is equal to is the same as

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.

$6+5$

Children to draw the ten frame and counters/cubes.

Children to develop an understanding of equality e.g.
$6+\square=11$
$6+5=5+\square$
$6+5=\square+4$

Conceptual variation; different ways to ask children to solve 21 +

 34

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease

Concrete

Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).

Counting back (using number lines or number tracks) children start with 6 and count back 2.

$6-2=4$

Pictorial

Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.

Q М®O

Children to represent what they see pictorially e.g.

Abstract

$4-3=$
$\urcorner=4-3$

4	
3	$?$

Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Conceptual variation; different ways to ask children to solve 391 186

Calculation Policy Multiplication

Key Language : double, times, multiplied by, the product of groups of, lots of equal groups

Use arrays to illustrate commutativity counters and other objects can also be used.
$2 \times 5=5 \times 2$

Children to represent the arrays pictorially.

Children to be able to use an array to write a range of calculations e.g.
$10=2 \times 5$
$5 \times 2=10$
$2+2+2+2+2=10$
$10=5+5$

Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15

Children to represent the concrete manipulatives pictorially.

Grid method

x	10	5
4	40	20

Children to be encouraged to show the steps they have taken.
4×15
\square
105
$10 \times 4=40$
$5 \times 4=20$
$40+20=60$
$40+20=60$

A number line can also be used

Formal column method with place value counters (base 10 can also be used.) 3×23

Children to record what it is they are doing to show understanding. 3×23 $3 \times 20=60$

$$
/ \backslash \quad \begin{array}{lll}
& 3 \times 3=9 \\
20 & 3 & 60+9=69
\end{array}
$$

$$
23
$$

$$
\begin{array}{r}
\\
\times 3
\end{array}
$$

$$
69
$$

Conceptual variation; different ways to ask children to solve $6 \times$

Calculation Policy Division

Key Language : Share, group, divide,divided by half
Sharing using a range of objects.
$6 \div 2$

2d $\div 1 \mathrm{~d}$ with remainders using lollipop sticks. Cuisenaire
rods, above a ruler can also be used.
$13 \div 4$

Use of lollipop sticks to form wholes- squares are made
because we are
dividing by 4.

Short division using place value counters to group. $615 \div 5$

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.
$5 \stackrel{123}{61^{3} 5}$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	1 s
\bigcirc	0^{000}	0000	0000
1000s	100s	10s	1 s
		0000	-(0)

We can't group 2 thousands into
groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$\begin{array}{lr}\text { After exchanging the hundred, we } & 12 \stackrel{021}{2544} \\ \text { have } 14 \text { tens. We can group } 12 \text { tens } \\ \text { into a group of } 12 \text {, which leaves } 2 \text { tens. } & \frac{24}{14} \\ & \frac{12}{2}\end{array}$

Conceptual variation; different ways to ask children to solve $615 \div$

 5Using the part whole model below, how
can you divide 615 by 5 without using
short

division? \quad| I have $£ 615$ and share it equally |
| :--- |
| between 5 bank accounts. How |
| much will be in each account? |
| 615 pupils need to be put into 5 |
| groups. How many will be in each |
| group? |

Maths Vocabulary by year group:

Mathematics

EYFS	KS1		LKS2		UKS2	
big	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
birthday	- above	- anticlockwise	- 2-dimensional	- 2-dimensional	- accuracy	- 2-dimension
compare	- add	- bar chart	(2d)	(2d)	- acute angle	(2d)
- corner	- altogether	- bigger	- addition	- 3-dimensional	- addition	- 3-dimensional
- count	- array	- clock	- adjacent	(3d)	- area	(3d)
- day	- below	- clockwise	- ascending	- accuracy	- Carroll	- accuracy
- doubling - down	- column	- combine	- axe	- acute ang - addition	diagram - composit	- addition - adjacent
- empty	- corner	- count	- bar chart	- area	numbers	- algebra
- equal	- difference	- degrees	- Carroll	- categoric	- cubes	- axis
- fast	- digit	- describe	diagram	data	- denominator	- billion
- fast	- double	- describe	- chart	- continuou	- division	- common
- fewest	- edge	- draw	- common	data	- factor	factors
- full	- equal	- equal	- compare	- commo	- factor pair	- common
- group	- face	- equivalent	- degrees	- conversio	- factors	multiples
- heavy	\bigcirc - far / near	$\bigcirc{ }^{\circ} \mathrm{fold}$	- denominator	- convert	- \quad fifth - formal	- construct
$\begin{array}{ll}\circ & \text { holiday } \\ \circ & \text { left }\end{array}$	- greater than - group	- graph - group	- descending - diagonal	- coordina - decimal	- formal written	- conversion - co-ordinat
- less	- half / halves	- hour	- division	place	etho	degrees
- light	- halfway	- hundred	- frequency	decimals	- four fifths	denominator
- long	- left / right	- investigate	table	denominator	- half	- diagonal
- middle	- less / more	- label	- horizonta	- derive	- HCF	- difference
- more	- less than	- larger	- hundred	- equivalent	- hundreds	- division
- morning	- minus	- least popular	- leap year	- estimate	- imperial	equivalen
- m	\bigcirc	\bigcirc	- least	tion	improper	xpand
- night - nothing	- more - multiply	- lir	common - least popular	- frequency - hundredth	fraction - irregular	- expressi - factor
- one	- near / close	- match	- most	- integer	shape	- factor pair
- order		- minute	common	- inverse	- kilometre	

pair right same shape sharing short side size slow small ten today up week yesterday tomorrow zero			most popular multiples multiplication non-unit fraction numerator order orientation parallel partition perpendicular product recombine right angle roman numerals rotate rotation scale down scale up subtraction table tenths thousand twelve-hour clock twenty-four- hour clock unit fraction Venn diagram Vertical		LCM least common metric million mixed number most common (mode) multiples multiplication numerator ones/units percentage perimeter polygon polygon powers prime factor primes product proper fraction proportion quadrant quadrilateral quarter ratio reflex angle regular shape - squares - subtraction	formal written method function HCF horizontal hundreds imperial investigate - LCM - least common linear number sequences mean metric miles millions most common (most) multiple multiplication numerator ones/units operation opposite parallel perpendicular pie chart powers prime factor - prime number

Based on research by the Educational Endowment Fund in 2018, there is a clear vocabulary gap between students from disadvantaged backgrounds and students from non-disadvantaged backgrounds. The research says that, before they even start school, disadvantaged children have a 30,000,000-word gap on their peers. Currently, as they progress through the education system, this gap does not decrease quickly enough: 49% of Year 1 pupils have a limited vocabulary to which it affects their learning; and 43% of Year 7 pupils have a limited vocabulary to which it affects their learning. Following this trend, nearly half of students who come from a disadvantaged background are not sufficiently prepared for further education and/or employment.

Understanding the importance of subject-specific vocabulary can therefore greatly increase children's chances both within education, and beyond. To address this, The Outer West Learning Trust and Walbottle Campus decided to collaborate to create a vocabulary document which would ensure children from all backgrounds were provided with clear and consistent definitions of key subject-specific/Tier-3 vocabulary. As well as supporting children in their reading and writing progress whilst at primary school, this also supports children with their transition to secondary school; this document was created by subject leaders from across the Outer West

Learning Trust with input from subject faculty leads at Walbottle Campus. Using both secondary schemes of work and through discussions with secondary subject leaders, primary staff were able to create a 'vocabulary scheme of work' which ensured crosscurricular links and a 'spiralled coverage' of key vocabulary to ensure retainment.

